
Decentralized Systems Engineering

CS-438 – Fall 2024

Pierluca Borsò-Tan and Bryan Ford

Credits: P. Tennage, C. Basescu, et al.

So far...

● Decentralized communication & search

● Focusing on (mostly) unstructured networks

Characteristics:

● (Nearly) stateless

● Simple to engineer

● Expressive search

● Optimizations require (true) random sampling (hard)

●  inefficient, 𝑂 𝑛 search at best

Can we aim for 𝑂 log𝑛 efficiency ?

→ later today

Ad-hoc Routing Protocols

Finding your way through ad-hoc networks

(Homework 1)

P2P Example (1/2) – Your Home & EPFL Networks

Public Internet

EPFL

Network

Icon credits: Flaticon

Diode

(EPFL Firewall)

Private

Network

within

EPFL 192.168.1.0/24

128.178.35.194

18.29.2.34

ISP network

Home

Router + NAT

192.168.1.11

P2P Example (2/2) – Ad-Hoc Networks

Icon credits: Flaticon

P2P Examples – Quick analysis

● Peers may not be directly accessible

● Peers may join or leave the network at arbitrary times

● We need to route packets through the system

Some differences:

● Protocols / Physical Layer / etc.

● Bandwidth

● Churn

● Node mobility / network reconfiguration

Naive routing – don’t do this at home

B D

CA

Nodes advertise a distance to other nodes

B → D = 1

A → D = 2 (through B or C)

C → D = 1

1

1

1

1
On link failure, B updates:

B → D = 2 (through C)

Then C updates:

C → D = 3 (through B)

1

Reaching arbitrary peers in a network : AODV

Ad-hoc On-demand Distance Vector

Key idea: Flooding search for a node (e.g. E)

Nodes remember where the search came from

... And build a return path

A → B → D → E

A  B  D  E

Reactive (on-demand) routing, cached

Used in the ZigBee wireless protocol

B D

ECA

Reaching arbitrary peers in a network : DSDV

Destination-Sequenced Distance Vector

Key idea:

● Store next hop for any destination (𝑂 𝑛)

● Version (“sequence”) routing table entries

Each node periodically broadcasts its existence:

Flood the network, with increasing sequence numbers

𝑂 𝑛2 traffic, superseded by newer protocols,

versioning idea lives on !

A

B

C

D

Quality factors in ad-hoc routing

● Traffic at rest (maintenance)

● Speed of convergence

● Loop-free

● Traffic during updates

● Robustness to churn & movement

Compact Routing &

Structured Search

𝑂 log 𝑛 , here we come !

General Approach

● Build a structured overlay network

● Enables significant efficiency gains

We’ll pay a price:

● More engineering effort

● Nodes will need local state

● Constant fight against churn

● Loss of generality

Distributed Hash Table

Local hash tables need:

● “Good” hash function

● Random-access memory

● Not too full

Distributed hash tables considerations:

● What do we need from the hash function ?

Avoid collisions, not time-sensitive

→ Cryptographic hash, well distributed

● What are we missing ?

→ RAM

Chord DHT

● Hash into a collection of RAMs

● Circular hash ID space

(e.g., SHA-256)

● Each node has a

pseudo-random hash ID

What should go into that ID ?

Public Key !

0

2254

2255

3 ∙ 2254

2253

E

A

B

C
D

Chord DHT

How do we approximate RAM ?

● Divide the space up !

● Each node owns the space

to its successor

API:

● PUT(key, value)

● GET(key) → value / error

Keys use same hash function as nodes

0

2254

2255

3 ∙ 2254

E

A

B

C
D

Successor: B

kv4

kv5

kv3
kv2

kv1

Chord DHT – Reliability

How do we prevent data loss ?

● Redundancy – factor 𝑟

● Copies are stored

by “owner” node +

(𝑟 − 1) successors

0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1

Chord DHT – Load

What is the expected load per node?

𝑛 – # of nodes

𝑚 – # of key-value pair

𝑟 – redundancy factor

Load ~
𝑟∙𝑚

𝑛

0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1

Chord DHT – Performance

How do we make this 𝑂 log𝑛 ?

(in storage, network, etc.)

● Using only successors:

𝑂 1 routing table size

𝑂 𝑛 access 

● Binary search ?

Finger tables !

0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1

Chord DHT – Finger tables
0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1

Distance Bucket

1 (successor) = B

½ circle D

¼ circle C

⅛ circle B

... ...

Chord DHT – Churn

Need to handle:

● Concurrent joining

● Nodes leaving (gracefully)

● Nodes leaving (unresponsive)

Approach:

● Split correctness & performance

● Transient failures can be retried

0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1

Chord DHT – Degenerate cases
0

2254

2255

3 ∙ 2254

E

A

B

C
D

kv4

kv5

kv3
kv2

kv1Network partitions can lead to

some (transient) degenerate cases.

Where:

B’s successor is D

D’s successor is A

A’s successor is C

C’s successor is E

etc.

Next steps - Readings

Mandatory:

● DSDV: Routing over a Multihop Wireless Network of Mobile Computers

● Chord: A Scalable P2P Lookup Service for Internet Applications

Recommended (Engineering):

● The Babel Routing Protocol (RFC 8966)

● Kademlia: A Peer-to-Peer Information System Based on the XOR Metric

... and a few others for the curious among you ...

→ Use Friday’s session to ask questions

22

	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: So far...
	Slide 3: Ad-hoc Routing Protocols
	Slide 4: P2P Example (1/2) – Your Home & EPFL Networks
	Slide 5: P2P Example (2/2) – Ad-Hoc Networks
	Slide 6: P2P Examples – Quick analysis
	Slide 7: Naive routing – don’t do this at home
	Slide 8: Reaching arbitrary peers in a network : AODV
	Slide 9: Reaching arbitrary peers in a network : DSDV
	Slide 10: Quality factors in ad-hoc routing
	Slide 11: Compact Routing & Structured Search
	Slide 12: General Approach
	Slide 13: Distributed Hash Table
	Slide 14: Chord DHT
	Slide 15: Chord DHT
	Slide 16: Chord DHT – Reliability
	Slide 17: Chord DHT – Load
	Slide 18: Chord DHT – Performance
	Slide 19: Chord DHT – Finger tables
	Slide 20: Chord DHT – Churn
	Slide 21: Chord DHT – Degenerate cases
	Slide 22: Next steps - Readings

