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So far...

● Decentralized communication & search

● Focusing on (mostly) unstructured networks

Characteristics:

● (Nearly) stateless

● Simple to engineer

● Expressive search

● Optimizations require (true) random sampling (hard)

●  inefficient, 𝑂 𝑛 search at best

Can we aim for 𝑂 log𝑛 efficiency ? 

→ later today



Ad-hoc Routing Protocols

Finding your way through ad-hoc networks

(Homework 1)



P2P Example (1/2) – Your Home & EPFL Networks
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P2P Example (2/2) – Ad-Hoc Networks
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P2P Examples – Quick analysis

● Peers may not be directly accessible

● Peers may join or leave the network at arbitrary times

● We need to route packets through the system

Some differences:

● Protocols / Physical Layer / etc.

● Bandwidth

● Churn

● Node mobility / network reconfiguration



Naive routing – don’t do this at home
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Reaching arbitrary peers in a network : AODV

Ad-hoc On-demand Distance Vector

Key idea: Flooding search for a node (e.g. E)

Nodes remember where the search came from

... And build a return path

A → B → D → E 

A  B  D  E

Reactive (on-demand) routing, cached

Used in the ZigBee wireless protocol
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Reaching arbitrary peers in a network : DSDV

Destination-Sequenced Distance Vector

Key idea:

● Store next hop for any destination ( 𝑂 𝑛 )

● Version (“sequence”) routing table entries

Each node periodically broadcasts its existence:

Flood the network, with increasing sequence numbers

𝑂 𝑛2 traffic, superseded by newer protocols,

versioning idea lives on !
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Quality factors in ad-hoc routing

● Traffic at rest (maintenance)

● Speed of convergence

● Loop-free

● Traffic during updates

● Robustness to churn & movement



Compact Routing &

Structured Search

𝑂 log 𝑛 , here we come !



General Approach

● Build a structured overlay network

● Enables significant efficiency gains

We’ll pay a price:

● More engineering effort

● Nodes will need local state

● Constant fight against churn

● Loss of generality



Distributed Hash Table

Local hash tables need:

● “Good” hash function

● Random-access memory

● Not too full

Distributed hash tables considerations:

● What do we need from the hash function ?

Avoid collisions, not time-sensitive

→ Cryptographic hash, well distributed

● What are we missing ? 

→ RAM



Chord DHT

● Hash into a collection of RAMs

● Circular hash ID space

(e.g., SHA-256)

● Each node has a

pseudo-random hash ID

What should go into that ID ?

Public Key ! 
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Chord DHT

How do we approximate RAM ?

● Divide the space up !

● Each node owns the space

to its successor

API:

● PUT(key, value)

● GET(key) → value / error

Keys use same hash function as nodes
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Chord DHT – Reliability

How do we prevent data loss ?

● Redundancy – factor 𝑟

● Copies are stored

by “owner” node +

(𝑟 − 1) successors
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Chord DHT – Load

What is the expected load per node?

𝑛 – # of nodes

𝑚 – # of key-value pair

𝑟 – redundancy factor

Load ~
𝑟∙𝑚

𝑛
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Chord DHT – Performance

How do we make this 𝑂 log𝑛 ?

(in storage, network, etc.)

● Using only successors:

𝑂 1 routing table size

𝑂 𝑛 access 

● Binary search ? 

Finger tables !
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Chord DHT – Finger tables
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Chord DHT – Churn

Need to handle:

● Concurrent joining

● Nodes leaving (gracefully)

● Nodes leaving (unresponsive)

Approach:

● Split correctness & performance

● Transient failures can be retried
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Chord DHT – Degenerate cases
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some (transient) degenerate cases.
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Next steps - Readings

Mandatory:

● DSDV: Routing over a Multihop Wireless Network of Mobile Computers

● Chord: A Scalable P2P Lookup Service for Internet Applications

Recommended (Engineering):

● The Babel Routing Protocol (RFC 8966)

● Kademlia: A Peer-to-Peer Information System Based on the XOR Metric

... and a few others for the curious among you ...

→ Use Friday’s session to ask questions

22
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