Decentralized Systems Engineering

CS-438 — Fall 2024

DEDI S Pierluca Borso-Tan and Bryan Ford E P F L

Credits: P. Tennage, C. Basescu, et al.

So far...

Decentralized communication & search
Focusing on (mostly) unstructured networks

Characteristics:

(Nearly) stateless

Simple to engineer

Expressive search

Optimizations require (true) random sampling (hard)

® inefficient, 0(v/n) search at best

Can we aim for O(logn) efficiency ?
- later today

Ad-hoc Routing Protocols

Finding your way through ad-hoc networks

(Homework 1)

P2P Example (1/2) — Your Home & EPFL Networks

128.178.35.194
Public Internet

Home E
Router + NAT

192.168.1.11
s

Icon credits: Flaticon

Private
Network

within
EPFL

192.168.1.0/24

P2P Examples — Quick analysis

e Peers may not be directly accessible
e Peers may join or leave the network at arbitrary times
e \We need to route packets through the system

Some differences:

e Churn
e Node mobility / network reconfiguration
e Protocols / Physical Layer / etc.

e Bandwidth

Nalive routing — don’t do this at home

Nodes advertise a distance to other nodes
B>D=1
A - D =2 (through B or C)
C—>D=1

On link failure, B updates: |
B = D =2 (through C)

Then C updates:
C - D = 3 (through B)

Reaching arbitrary peers in a network : AODV

Ad-hoc On-demand Distance Vector

Key idea: Flooding search for a node (e.g. E)

Nodes remember where the search came from
... .And build a return path

A->B->D=>E
AECB<SCD<CE

Reactive (on-demand) routing, cached
Used in the ZigBee wireless protocol

Reaching arbitrary peers in a network : DSDV

Destination-Sequenced Distance Vector

Key idea:
e Store next hop for any destination (O(n))
e Version (“sequence”) routing table entries

Each node periodically broadcasts its existence:
Flood the network, with increasing sequence numbers

0(n?) traffic, superseded by newer protocols,
versioning idea lives on !

Quality factors in ad-hoc routing

Compact Routing &
Structured Search

O(logn), here we come !

General Approach

e Build a structured overlay network
e Enables significant efficiency gains
We'll pay a price:

More engineering effort

Nodes will need local state

Constant fight against churn
Loss of generality

Distributed Hash Table

Local hash tables need:

e “Good” hash function

e Random-access memory
e Not too full

Distributed hash tables considerations:

e What do we need from the hash function ?
Avoid collisions, not time-sensitive
—> Cryptographic hash, well distributed

e \What are we missing ?
- RAM

Chord DHT

e Hash into a collection of RAMs

e Circular hash ID space
(e.g., SHA-256)

e Each node has a
pseudo-random hash ID

What should go into that ID ?
Public Key !

2255

Chord DHT

Successor: B

How do we approximate RAM ?

e Divide the space up!

E
e Each node owns the space

. 2254
to ItsS successor 3. 2254

API:
e PUT(key, value)

kv3
e GET(key) - value / error

Keys use same hash function as nodes

2255

Chord DHT — Reliabllity

How do we prevent data loss ?
e Redundancy — factor r
e Copies are stored

by “owner” node + 3.225
(r — 1) successors

Chord DHT — Load

What is the expected load per node?

n — # of nodes
m — # of key-value pair

r — redundancy factor 2254

3 .2254

rm
Load ~ —
n

2255

Chord DHT — Performance

How do we make this O(logn) ?
(in storage, network, etc.)

e Using only successors: E
0 (1) routing table size 5254
0(n) access ® 3. 2254

e Binary search ?
Finger tables !

2255

Chord DHT — Finger tables

Distance Bucket

1 (successor) =B
Y% circle D

Y4 circle C

s circle B

3 .2254

2255

2254

Chord DHT — Churn

Need to handle:

e Concurrent joining

e Nodes leaving (gracefully)

e Nodes leaving (unresponsive) E
Approach: 3. 22%% 2
e Split correctness & performance

e Transient failures can be retried

kv3

2255

Chord DHT — Degenerate cases
kv5 0 A

Network partitions can lead to kv4
some (transient) degenerate cases.

kvl

Where: E B
B’s successor is D 2254
D’s successor is A 3.2%%

A’s successor is C
C’s successor is E

etc. kv3

2255

Next steps - Readings
Mandatory:
e DSDV: Routing over a Multihop Wireless Network of Mobile Computers
e Chord: A Scalable P2P Lookup Service for Internet Applications
Recommended (Engineering):
e The Babel Routing Protocol (RFC 8966)
e Kademlia: A Peer-to-Peer Information System Based on the XOR Metric

... and a few others for the curious among you ...

- Use Friday’s session to ask questions

22

	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: So far...
	Slide 3: Ad-hoc Routing Protocols
	Slide 4: P2P Example (1/2) – Your Home & EPFL Networks
	Slide 5: P2P Example (2/2) – Ad-Hoc Networks
	Slide 6: P2P Examples – Quick analysis
	Slide 7: Naive routing – don’t do this at home
	Slide 8: Reaching arbitrary peers in a network : AODV
	Slide 9: Reaching arbitrary peers in a network : DSDV
	Slide 10: Quality factors in ad-hoc routing
	Slide 11: Compact Routing & Structured Search
	Slide 12: General Approach
	Slide 13: Distributed Hash Table
	Slide 14: Chord DHT
	Slide 15: Chord DHT
	Slide 16: Chord DHT – Reliability
	Slide 17: Chord DHT – Load
	Slide 18: Chord DHT – Performance
	Slide 19: Chord DHT – Finger tables
	Slide 20: Chord DHT – Churn
	Slide 21: Chord DHT – Degenerate cases
	Slide 22: Next steps - Readings

